

ELSACOR12T-ELECTRONICS (CC12)

Time Allotted: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

GROUP-A

- Answer any *five* questions from the following: 1.
 - (a) What is meant by solenoidal vector?
 - (b) Show that the electric field is always perpendicular to an equipotential surface.
 - (c) Is it possible for a metal sphere of 1 cm radius to hold a charge of one coulomb?
 - (d) Define M.M.F.
 - (e) What was the inconsistency in Ampere's Law?
 - (f) Define phase and group velocity.
 - (g) For a position vector $\vec{r} = \hat{i}x + \hat{j}y + \hat{k}z$, prove that $\vec{J} \times \vec{r} = 0$.
 - (h) An amount of charge Q is divided amongst two particles. Find the charge on each particle such that the effective force between them is maximum.

GROUP-B

		Answer any six questions from the following	$5 \times 6 = 30$
2.	(a)	State and prove Poynting theorem.	5
	(b)	What is skin effect? Derive an expression for skin depth.	1+4
	(c)	If $\vec{E} = \hat{i} E_0 \cos \omega \left(\frac{z}{c} - t\right) + \hat{j} E_0 \sin \omega \left(\frac{z}{c} - t\right)$. Calculate the magnetic field \vec{B} .	5
	(d)	Show that in free space the electric field \vec{E} , magnetic field \vec{B} and the propagation vector \vec{k} are perpendicular to each other.	5
	(e)	Establish electrostatic boundary condition of electric field and electric displacement vector (both normal and tangential component) at the interface of two linear dielectrics.	5
	(f)	Write down Maxwell's equation in integral form and explain the physical significance of each equation.	5

5063

 $2 \times 5 = 10$

Full Marks: 40

CBCS/B.Sc./Hons./5th Sem./ELSACOR12T/2021-22

- (g) An a.c. voltage source $V = V_0 \sin \omega t$ is connected across a parallel plate capacitor C. Prove that the displacement current through the capacitor is the same as the conduction current in the wire.
- (h) (i) Show that the electric field is equal to the negative gradient of the electric 2+3 potential.

5

- (ii) A magnetic field of $4 \times 10^{-3} \hat{k}$ Tesla exerts a force of $(4\hat{i} + 3\hat{j}) \times 10^{-10}$ N on a particle having a charge of 1×10^{-9} C and moving in the *x*-*y* plane. Calculate the velocity of the particle.
- (i) (i) State Gauss' law. Derive Coulomb's law from Gauss's law. 1+2+2
 - (ii) Apply Gauss's law to calculate the electric field due to an infinite sheet of charge.
 - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

_____X_____